奧數思維訓練100例及答案?今天的題目是關于因數問題,所用知識不超過小學5年級,我來為大家科普一下關于奧數思維訓練100例及答案?下面希望有你要的答案,我們一起來看看吧!
今天的題目是關于因數問題,
所用知識不超過小學5年級。
題目(4星難度):
每個正整數都有一個最大的奇數因數,比如26的最大奇數因數就是13。
某學校5年級共有200名學生,學号分别是1-200。每名學生都計算出了自己學号的最大奇數因數,請問這些數的和是多少?
輔導辦法:
題目寫給小朋友,讓他自行思考解答,若20分鐘還不能解答,由家長進行講解。
講解思路:
如果從這200個數直接考慮,
這道題目将會非常繁瑣。
如果換種思路,
從奇數因數本身出發,
題目會容易很多。
步驟1:
先思考第一個問題,
在200個人的最大奇數因數中,
出現最多的奇數是哪個,出現幾次?
兩個人的最大奇數因數相同,
說明兩人的學号是2^k倍的關系,
其中2^k表示2的k次方,k是自然數。
在1-200的200個數中,
最大的2^k是128=2^7,
故最多有8人的最大奇數因數相同,
他們的學号是1、2、4、8…、128。
因此出現最多的奇數是1,出現8次。
步驟2:
再思考第二個問題,
在200個人的最大奇數因數中,
隻出現7次的奇數有哪些?
某個奇數a隻出現7次,
說明該奇數對應的學号是
a、2a、4a、8a、…、64a,
且128a一定大于200,
即有 64a <200 <128a,
即 200/128< a <200/64,
符合條件的奇數a隻有3。
步驟3:
再思考第三個問題,
在200個人的最大奇數因數中,
隻出現6、5、…、1次的奇數有哪些?
類似于步驟2的分析可以得到,
隻出現6次的奇數是5,
隻出現5次的奇數是7、9、11,
隻出現4次的奇數是13、15、…、25,
隻出現3次的奇數是27、35、…、49,
隻出現2次的奇數是51、53、…、99,
隻出現1次的奇數是101、103、…、199。
步驟4:
綜合上述幾個問題,
求這些最大奇數因數的和。
出現8次的所有數的和是1;
出現7次的所有數的和是3;
出現6次的所有數的和是5;
出現5次的所有數的和是
7 9 11=27;
出現4次的所有數的和是
13 15 … 25=133;
出現3次的所有數的和是
27 29 … 49=456;
出現2次的所有數的和是
51 53 … 99=1875;
出現1次的所有數的和是
101 103 … 199=7500。
所以原問題答案是
7500*1 1875*2 456*3 133*4 27*5 5*6 3*7 1*8
=13344。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!