與角有關的存在性問題包括相等角的存在性、二倍角或半角的存在性,其他倍數關系角的存在性等,解決這類問題我們通常利用以下知識點去構造相關角:
①平行線的同位角、内錯角相等;②等腰三角形的等邊對等角;③相似三角形對應角相等;④全等三角形對應角相等;⑤三角形的外角定理等。
然後利用解直角三角形、相似三角形邊的比例關系作為計算工具去計算求解,難度相對較大,需要同學們靈活運用,融會貫通。
【類型一 相等角的存在性問題】
方法一:角相等,則正切值相等(銳角範圍内)
隻要已知或能計算出角的正切值,就可通過構造“三垂直”解決角的存在性問題。
此外,提供另外三種方法,求點P的坐标,
這些方法在《滿分沖刺秘籍》中都有詳細介紹和例題講解,大家可以參考。
【類型二 二倍角或半角的存在性問題】
二倍角的構造方法
如圖,已知∠α,我們可以利用等腰三角形和外角定理去構造2α,在BC邊上找一點D,使得BD=AD,則∠ADC=2α.
,
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!