詳細介紹通過微分法、泰勒展開法計算sin27°近似值的主要思路和步驟。
方法一:微分法計算∵(sinx)´=cosx
∴dsinx=cosxdx.
則有△y≈cosx△x,此時有:
sinx=sinx0 △y≈sinx0 cosx0△x。
需要注意的是,計算中的△x若是角度要轉化為弧度。
對于本題有:
x=27°=30° △x,△x=-0.052。
則:
sin27°≈sin30° cos30°*(-0.052),
≈sin30° cos30°*(-0.052),
≈0.455。
注意:本題中取x0為30°,當27°越接近30°時,
近似值精确度越高。
方法二:泰勒公式計算
1.sinx,cosx在x=0處泰勒展開
根據泰勒幂級數展開,有:
sinx=x-x3/3! x5/5!-x7/7! ... (-1)n*x2n 1/(2n 1)!,
cosx=1-x2/2! x4/4! ... (-1)n*x2n/2n!。
其中:n≥0,x為任意實數,即弧度制形式。
2.sinx在x=π/6處泰勒展開
sinx=sin(x-π/6 π/6)
=(√3/2)sin(x-π/6) (1/2)cos(x-π/6)
=(√3/2)∑<n=0,∞>(-1)n*(x-π/6)2n 1/(2n 1)!
(1/2)∑<n=0,∞>(-1)n*(x-π/6)2n/(2n)!
=(1/2)[1 √3(x-π/6)-(x-π/6)2/2!-√3(x-π/6)3/3!
(x-π/6)4/4! √3(x-π/6)5/5!-...]
=1/2 1/2[√3(x-π/6)-(x-π/6)2/2!-√3(x-π/6)3/3!
(x-π/6)4/4! √3(x-π/6)5/5!-...]。
3.當n=1時的近似表達式
sinx
≈1/2 (√3/2)[(x-π/6)-(x-π/6)3/3!]-(x-π/6)2/4
≈1/2 (x-π/6)[(√3/2)-(√3/12)(x-π/6)2-(x-π/6)/4]
≈1/2 (1/12)(x-π/6)[6√3-√3(x-π/6)2-3(x-π/6)]
≈1/2 (√3/12)(x-π/6)[6-(x-π/6)2-√3(x-π/6)]
對于本題:x-π/6=3π/20-π/6≈(-0.052),則:
sin27°
≈1/2 (√3/12)*(-0.052)*(6-(-0.052)2-√3*(-0.052))
≈0.454。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!