tft每日頭條

 > 生活

 > 全體自然數之和為什麼是負

全體自然數之和為什麼是負

生活 更新时间:2024-12-14 13:36:44

[閩南網]

缺8數是什麼意思?在自然數字中沒有8是怎麼回事?看完以下的解析,小編表示真是活到老學到老呢!一起來看看吧!

缺8數是什麼意思

在自然數12345679中沒有8,所以被稱為“缺8數”,它有非常多奇妙的性質。解析神奇的缺8數有什麼秘密!

缺8數在乘1至81中的9的倍數可以得到“清一色”,例如:

全體自然數之和為什麼是負(缺8數是什麼意思)1

清一色

缺8數在乘1至81中的9的倍數可以得到“清一色”,例如:

12345679×9=111111111

12345679×18=222222222

12345679×27=333333333

12345679×36=444444444

12345679×45=555555555

12345679×54=666666666

12345679×63=777777777

12345679×72=888888888

12345679×81=999999999

三位一體

缺8數乘以3的倍數但不是9的倍數的數(12起),可以得到“三位一體”,例如:

12345679×12=148148148

12345679×15=185185185

12345679×21=259259259

12345679×30=370370370

12345679×33=407407407

12345679×42=518518518

12345679×48=592592592

12345679×51=629629629

12345679×57=703703703

12345679×78=962962962

另一個有趣的結果:

12345679×8=98765432

輪流休息

當乘數不是9或3的倍數時,此時雖然沒有清一色或三位一體的現象,但仍可以看到一種奇異性質:乘積的各位數字均無雷同,缺少1個數字,而且存在着明确的規律。另外,在乘積中缺3、缺6、缺9的情況肯定不存在。

先看一位數的情形:

12345679×1=12345679(缺0和8)

12345679×2=24691358(缺0和7)

12345679×4=49382716(缺0和5)

12345679×5=61728395(缺0和4)

12345679×7=86419753(缺0和2)

12345679×8=98765432(缺0和1)

上面的乘積中,都不缺數字3,6,9,而都缺0。缺的另一個數字是8,7,5,4,2,1,且從大到小依次出現。

讓我們看一下乘數在區間[10,17]的情況(其中12和15因是3的倍數,予以排除):

而在乘數與缺的數中也有規律可循,即缺數與乘數的個、十位數字相加的和等于9。如:

12345679×10=123456790(缺8) 1 0 8=9

12345679×11=135802469(缺7) 1 1 7=9

12345679×13=160493827(缺5) 1 3 5=9

12345679×14=172839506(缺4) 1 4 4=9

12345679×16=197530864(缺2) 1 6 2=9

12345679×17=209876543(缺1) 1 7 1=9

乘數在[19,26]及其他區間(區間長度等于7)的情況與此完全類似。以上乘積中仍不缺3,6,9,但再也不缺0了,而缺少的另一個數與前面的類似——按大小的次序各出現一次。乘積中缺什麼數,就像工廠或商店中職工“輪休”,人人有份,既不多也不少,實在有趣。

乘數在[19~26]及其他區間(區間長度等于7)的情況與此完全類似。

12345679×19=234567901(缺8)

12345679×20=246913580(缺7)

12345679×22=271604938(缺5)

12345679×23=283950617(缺4)

12345679×25=308641975(缺2)

12345679×26=320987654(缺1)

一以貫之

當乘數超過81時,乘積将至少是十位數,但上述的各種現象依然存在,真是“吾道一以貫之”。例如:

乘數為9的倍數

12345679×243=2999999997

隻要把乘積中最左邊的一個數2加到最右邊的7上,仍呈現“清一色”。

乘數為3的倍數,但不是9的倍數

12345679×84=1037037036

隻要把乘積中最左邊的一個數1加到最右邊的6上,又出現“三位一體”。

乘數為3K 1或3K 2型

12345679×98=1209876542

表面上看來,乘積中出現相同的2,但隻要把乘積中最左邊的數1加到最右邊的2上去之後,所得數為209876543,是“缺1”數,仍是輪流“休息”。

走馬燈

當缺8數乘以19時,其乘數将是234567901,像走馬燈一樣,原先居第二位的數2卻成了開路先鋒。例如:

12345679×19=234567901

12345679×28=345679012

12345679×37=456790123

12345679×46=567901234

深入的研究顯示,當乘數為一個公差等于9的算術級數時,出現“走馬燈”的現象。例如:

12345679×8=098765432

12345679×17=209876543

12345679×26=320987654

12345679×35=432098765

現在,我們又把乘數依次換為10,19,28,37,46,55,64,73(它們組成公差為9的等差數列):

12345679×10=123456790

12345679×55=679012345

12345679×64=790123456

12345679×73=901234567

以上乘積全是“缺8數”!數字1,2,3,4,5,6,7,9像走馬燈似的,依次輪流出現在各個數位上。

攜手同行

回文缺8數的精細結構引起研究者的濃厚興趣,人們偶然注意到:

12345679×4=49382716

12345679×5=61728395

前一式的數颠倒過來讀,正好就是後一式的積數。(雖有微小的差異,即5代以4,而根據“輪休學說”,這正是題中應有之義)

這樣的“回文結對,攜手并進”現象,對(13、14)(22、23)(31、32)(40、41)等各對乘數(每相鄰兩對乘數的對應公差均等于9)也應如此。例如:

12345679×13=160493827

12345679×14=172839506

12345679×22=271604938

12345679×23=283950617

12345679×67=827160493

12345679×68=839506172

前一式的數颠倒過來讀,正好是後一式的積數。(後一式的2移到後面,并5代以4)

遺傳因子

“缺8數”還能“生兒育女”,這些後裔秉承其“遺傳因子”,完全承襲上面的這些特征。

所以這個龐大家族的成員幾乎都同其始祖12345679具有同樣的本領。

例如,506172839是“缺8數”與41的乘積,所以它是一個衍生物。

我們看到,506172839×3=1518518517。

将乘積中最左邊的數1加到最右邊的7上之後,得到8。如前所述,“三位一體”模式又來到我們面前。

回文現象

繼續做乘法:

12345679×9=111111111

12345679×99=1222222221

12345679×999=12333333321

12345679×9999=123444444321

12345679×99999=1234555554321

12345679×999999=12345666654321

12345679×9999999=123456777654321

12345679×99999999=1234567887654321

12345679×999999999=12345678987654321

奇迹出現了!等号右邊全是回文數(從左讀到右或從右讀到左,同一個數)。

而且,這些回文數全是“階梯式”上升和下降,神奇、優美、有趣!

因為12345679=333667×37,所以“缺8數”是一個合數。

“缺8數”和它的兩個因數333667、37,這三個數之間有一種奇特的關系。

一個因數333667的首尾兩個數3和7、就組成了另一個因數37;

而“缺8數”本身數字之和1 2 3 4 5 6 7 9也等于37。

可見“缺8數”與37天生結了緣。

更令人驚奇的是,把1/81化成小數,這個小數也是“缺8數”:

1/81=0.012345679012345679012345679……

為什麼别的數字都不缺,唯獨缺少8呢?

原來1/81=1/9×1/9=0.1111…×0.11111….

這裡的0.1111…是無窮小數,在小數點後面有無窮多個1。

“缺8數”的奇妙性質,集中體現在大量地出現數學循環的現象上,而且這些循環非常有規律,令人驚訝。

“缺8數”的奇特性質,早就引起了人們的濃厚興趣。而它其中還有多少奧秘,人們一定會把它全部揭開。

“缺8數”太奇妙了,讓我這個對數學沒啥興趣的人也忍不住要大加贊美啊!

追本求源

缺8數12345679實際上與循環小數是一根藤上的瓜,因為:

1/81=0.012345679012345679012345679……,缺8數和1/81的循環節有關。

在以上小數中,為什麼别的數碼都不缺,而唯獨缺少8呢?

我們看到,1/81=1/9×1/9,把1/9化成循環小數,其循環節隻有一位,即1/9=0.111111111……

1/9×1/9,即無窮個1的自乘。不妨先從有限個1的平方來看:

很明顯,11的平方=121,111的平方=12321,……,直到111111111的平方=12345678987654321。

但無窮個1的平方,長長的隊伍看不到盡頭,怎麼辦呢?利用數學歸納法,不難證明,在所有的層次,8都被一一跳過。

那麼,缺8數乘以9的倍數得到“清一色”就很好理解了,因為:

1/81×9=1/9=0.111111111……

缺8數乘以3的倍數得到“三位一體”也不難理解,因為:

1/81×3=1/27=0.037037037……,一開始就出現了三位的循環節。

缺8數隐藏在循環小數裡

缺8數乘以公差為9的等差數列時相當于在原有基礎上每位數加1,自然就出現“走馬燈”了。

循環小數與循環群、周期現象的研究方興未艾,缺8數已引起人們的濃厚興趣與密切關注。由于計算機科學的蓬勃發展,人們越來越不滿足于泛泛的幾條性質,而更着眼于探索其精微的結構。

簡單的說,缺8數是這麼來的:

0.1

0.02

0.003

0.0004

0.00005

0.000006

0.0000007

0.00000008

0.000000009

0.0000000010

0.00000000011

……(依此類推,然後全部進行加法運算)

——————————

0.1234567801234……

可以看見,9的消失是因為後面的10把1向前挪了1位。

其他類型

也許有人以為缺八數是10進制下的特有情況,但事實是,16進制下也有類似的數字出現。

10進制中缺8數關于乘數3的性質是由關于乘數9的性質衍生而來的,在8進制中沒有類似的性質。

16進制中缺e數為:123456789abcdf(16)

123456789abcdf(16)×f(16)=111111111111111(16)

如前所述,缺8數的出現與循環小數有密切的聯系。

在任何一種進制中,1除以最大的個位數,得到的都是0.1111...無限循環的小數,缺8數的全部性質理論上應該都能由此推出。

可以認為,缺8數的性質是由進制的規則決定的,是進制性質的反應。

神奇的數字

1×8 1= 9

12×8 2= 98

123×8 3= 987

1234×8 4= 9876

12345×8 5= 98765

123456×8 6= 987654

1234567×8 7= 9876543

12345678×8 8= 98765432

123456789×8 9= 987654321

1×9 2= 11

12×9 3= 111

123×9 4= 1111

1234×9 5= 11111

12345×9 6= 111111

123456×9 7= 1111111

1234567×9 8= 11111111

12345678×9 9= 111111111

123456789×9 10= 1111111111

9×9 7= 88

98×9 6= 888

987×9 5= 8888

9876×9 4= 88888

98765×9 3= 888888

987654×9 2= 8888888

9876543×9 1= 88888888

98765432×9 0= 888888888

1×1= 1

11×11= 121

111×111= 12321

1111×1111= 1234321

11111×11111= 123454321

111111×111111= 12345654321

1111111×1111111= 1234567654321

11111111×11111111= 123456787654321

111111111×111111111=12345678987654321

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved