tft每日頭條

 > 教育

 > 考研數學知識點梳理

考研數學知識點梳理

教育 更新时间:2025-02-24 23:24:05

考研數學知識點梳理?準備2021考研的同學們,一定要在自己的薄弱科上多下功夫,很多人都頭疼考研數學這一老大難,小精靈為各位考生整理了 “2021考研數學:各章節備考的基礎知識點有哪些?”的内容,希望對各位考生有所幫助,我來為大家科普一下關于考研數學知識點梳理?以下内容希望對你有幫助!

考研數學知識點梳理(各章節備考的基礎知識點有哪些)1

考研數學知識點梳理

準備2021考研的同學們,一定要在自己的薄弱科上多下功夫,很多人都頭疼考研數學這一老大難,小精靈為各位考生整理了 “2021考研數學:各章節備考的基礎知識點有哪些?”的内容,希望對各位考生有所幫助。

第一章 函數、極限與連續

1、函數的有界性

2、極限的定義(數列、函數)

3、極限的性質(有界性、保号性)

4、極限的計算(重點)(四則運算、等價無窮小替換、洛達法則、泰勒公式、重要極限、單側極限、夾逼定理及定積分定義、單調有界有極限定理)

5、函數的連續性

6、間斷點的類型

7、漸近線的計算

第二章導數與微分

1、導數與微分的定義(函數可導性、用定義求導數)

2、導數的計算(“三個法則一個表”:四則運算、複合函數、反函數,基本初等函數導數表“三種類型”:幂指型、隐函數、參數方程高階導數)

3、導數的應用(切線與法線、單調性(重點)與極值點、利用單調性證明函數不等式、凹凸性與拐點、方程的根與函數的零點、曲率(數一、二)

第三章中值定理

1、閉區間上連續函數的性質(最值定理、介值定理、零點存在定理)

2、三大微分中值定理(重點)(羅爾、拉格朗日、柯西)

3、積分中值定理

4、泰勒中值定理

5、費馬引理

第四章 一元函數積分學

1、原函數與不定積分的定義

2、不定積分的計算(變量代換、分部積分)

3、定積分的定義(幾何意義、微元法思想(數一、二))

4、定積分性質(奇偶函數與周期函數的積分性質、比較定理)

5、定積分的計算

6、定積分的應用(幾何應用:面積、體積、曲線弧長和旋轉面的面積(數一、二),物理應用:變力做功、形心質心、液體靜壓力)

7、變限積分(求導)

8、廣義積分(收斂性的判斷、計算)

第五章 空間解析幾何(數一)

1、向量的運算(加減、數乘、數量積、向量積)

2、直線與平面的方程及其關系

3、各種曲面方程(旋轉曲面、柱面、投影曲面、二次曲面)的求法

第六章 多元函數微分學

1、二重極限和二元函數連續、偏導數、可微及全微分的定義

2、二元函數偏導數存在、可微、偏導函數連續之間的關系

3、多元函數偏導數的計算(重點)

4、方向導數與梯度

5、多元函數的極值(無條件極值和條件極值)

6、空間曲線的切線與法平面、曲面的切平面與法線

第七章 多元函數積分學(除二重積分外,數一)

1、二重積分的計算(對稱性(奇偶、輪換)、極坐标、積分次序的選擇)

2、三重積分的計算(“先一後二”、“先二後一”、球坐标)

3、第一、二類曲線積分、第一、二類曲面積分的計算及對稱性(主要關注不帶方向的積分)

4、格林公式(重點)(直接用(不滿足條件時的處理:“補線”、“挖洞”),積分與路徑無關,二元函數的全微分)

5、高斯公式(重點)(不滿足條件時的處理(類似格林公式))

6、斯托克斯公式(要求低何時用:計算第二類曲線積分,曲線不易參數化,常表示為兩曲面的交線)

7、場論初步(散度、旋度)

第八章 微分方程

1、各類微分方程(可分離變量方程、齊次方程、一階線性微分方程、伯努利方程(數一、二)、全微分方程(數一)、可降階的高階微分方程(數一、二)、高階線性微分方程、歐拉方程(數一)、差分方程(數三))的求解

2、線性微分方程解的性質(疊加原理、解的結構)

3、應用(由幾何及物理背景列方程)

第九章 級數(數一、數三)

1、收斂級數的性質(要條件、線性運算、“加括号”、“有限項”)

2、正項級數的判别法(比較、比值、根值,p級數與推廣的p級數)

3、交錯級數的萊布尼茲判别法

4、絕對收斂與條件收斂

5、幂級數的收斂半徑與收斂域

6、幂級數的求和與展開

7、傅裡葉級數(函數展開成傅裡葉級數,狄利克雷定理)

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关教育资讯推荐

热门教育资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved