标簽:數據分析、數學、基礎
初等函數是由基本初等函數經過有限次的四則運算和複合運算所得到的函數。基本初等函數和初等函數在其定義區間内均為連續函數。目前對基本初等函數有兩種分類方法:數學分析有六種基本初等函數,高等數學隻有五種。數學分析所包含的初等函數比高數多一種,多的那一個初等函數是常量函數。
不論自變量如何變化,對應的函數值都始終保持不變的函數,稱為常數函數。其函數表達式和圖形如下:
y=C(又稱常值函數)
即以底數為自變量,指數為常數的函數稱為幂函數。其函數表達式和圖形如下:
在上圖中
一般地,指數函數的定義域是 R ,在指數函數的定義表達式中,系數必須是1,自變量x必須在指數的位置上,且不能是x的其他表達式,否則,就不是指數函數。其函數表達式和圖形如下:
在上圖中,紫色的是a=2,灰色的是a=0.5。分别指的是0<a<1和a>1兩種情況的圖形。
對數函數是以幂(真數)為自變量,指數為因變量,底數為常量的函數。其中x是自變量,函數的定義域是(0, ∞),即x>0。其函數表達式和圖形如下:
在上圖中,紫色的是a=2,灰色的是a=0.5。分别指的是0<a<1和a>1兩種情況的圖形。
三角函數是數學中常見的一類關于角度的函數。也就是說以角度為自變量,角度對應任意兩邊的比值為因變量的函數叫三角函數,三角函數将直角三角形的内角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。常見的三角函數包括正弦函數、餘弦函數和正切函數。其常見函數表達式和圖形如下:
在上圖中,綠色是正弦函數,紅色是餘弦函數,藍色是正切函數。
反三角函數是反正弦arcsin x,反餘弦arccos x,反正切arctan x,反餘切arccot x,反正割arcsec x,反餘割arccsc x這些函數的統稱。它并不能狹義的理解為三角函數的反函數,是個多值函數。三角函數的反函數不是單值函數,因為它并不滿足一個自變量對應一個函數值的要求,其圖像與其原函數關于函數y=x對稱。其常見函數表達式和圖形如下:
上圖中綠色是反正弦函數,紅色是反餘弦函數,藍色是反正切函數。
在處理問題中,涉及到的計算問題,遇到比較多的的對數和指數之間的轉換運算,下面就簡單介紹下,它們之間的公式轉換如下:
指數函數的運算:
對數函數的運算:
以上就是關于基本初等函數的介紹和它們的一些圖形及轉換公式。
如果函數 f 在區間 I 上的每一點都可導(對于區間端點考慮相應的單側導數, 如左端點考慮右導數),則稱 f 為區間 I 上的可導函數。此時,對 I 上的任意一點 x 都有 f的一個導數與之對應,這就定義了一個在區間 I 上的函數,稱為 f 在 I 上的導函數,簡稱導數。公式如下:
本文章為原創文章:技術文章—邏輯(不帶源碼)。
(1)更多優質内容和精彩資訊,可點擊文章最底部的了解更多
(2)搜索CDA小程序,手機端随時随地浏覽最新資訊和優質課程:
,
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!