考研數學重在知識點的理解和綜合應用,在做題的過程中,數學公式成為解題的重要工具。因此,紮實掌握考研數學的重點公式可以大大提高我們的做題效率。我們分章節整理考研數學線性代數部分的重點公式,旨在幫助大家理清重點,做到經常回顧,配合習題練習做到知識的靈活應用,今天我們一起了解下相似矩陣的知識點。
相似矩陣:設A,B都是n階矩陣,若存在可逆矩陣P,使得
則稱A相似于B。
矩陣可相似對角化的充分必要條件為:
矩陣可相似對角化的充要條件
兩個矩陣相似的必要條件:
兩個矩陣相似的必要條件
題型一:判定矩陣是否可相似對角化
例1:(97年考研真題)
分析:矩陣A能否相似對角矩陣的充要條件是A是否存在三個線性無關的特征向量。
解:由特征值和特征向量的定義得:
題型二:矩陣得相似标準形
例2:(矩陣相似标準形)
分析:A能相似于對角矩陣得充要條件是A應有三個線性無關得特征向量。
解:根據矩陣A相似對角矩陣得充要條件得:
,
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!